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Abstract

Association tests performed with the Likelihood-
Ratio Test (LR Test) can be an alternative to Fgr,
which is often used in population genetics to find
variants of interest. Because the LR Test has several
properties that could make it preferable to Fsp, we pro-
pose a novel approach for modeling unknown genotypes
in highly-similar species. To show the effectiveness
of this LR Test approach, we apply it to single-
nucleotide polymorphisms (SNPs) associated with the
recent speciation of the malaria vectors Anopheles
gambiae and Anopheles coluzzii and compare to Fgr.

1 Introduction

Fixation index, or Fis7, has been used extensively in
population genetics analyses (see [5,10,15] for insect-
focused studies). Fsr is a score between 0 and 1 calcu-
lated from population frequencies of known alleles. To
identify variants for further analysis, researchers often
calculate Fsr for each single nucleotide polymorphism
(SNP) individually, average individual Fgr scores over
larger regions (windows), rank them using these scores,
and then select interesting SNPs or regions based on an
arbitrarily-chosen cutoff (e.g., top 500 or top 0.1%).

An alternative approach is performing Likelihood-
Ratio Tests (LR Tests) using Logistic Regression (Lo-
gReg) models [2]. For each SNP, a LogReg model is
trained, and then a LR Test is performed between the
LogReg model and a null model based on the class
probabilities [7]. LR Tests report p-values that can be
used to identify statistically-significant variants relative
to this null model. Note that LR Tests have been used
extensively in human genome-wide association studies
(GWAS) [1].

Population analysis of heterogeneous insect genomes
often faces two challenges: small sample sizes and
unknown genotypes. Because Fsp does not take
samples sizes into account, the same Fgp score could be
reported with 2 or 100 samples, as long as the observed

frequencies of the alleles are identical. In contrast, LR
Tests can account for sample sizes when determining
the p-value of a SNP, which helps control type I errors
(false positives).

Another concern is unknown genotypes that result
from a variety of challenges, both biological (i.e.,
high levels of heterozygosity) and experimental (i.e.,
lower sampling coverage than expected). In humans
and other organisms, unknown genotypes are often
imputed using tools such as IMPUTE2 [8, 11] before
performing single SNP association tests using tools
such as SNPTEST [12]. Unknown genotypes in insect
genomes, however, are rarely imputed because of the
difficulty in doing so accurately with limited samples.

Rather than imputing unknown genotypes, we pro-
pose a framework that handles unknown genotypes
directly. We make the conservative (uninformative)
assumption that each unknown genotype has an equal
probability of being each genotype. We then ensure
that this assumption is reflected in the conditional
class probabilities calculated by the LogReg models
(Section 2.3). Then, in Section 3.2, we validate
these resulting LogReg models by comparing predicted
probabilities to analytically-calculated probabilities.

In Section 3.3, we compare the properties of Fgp
and our LR Test approach using simulated data. We
demonstrate that the p-values computed by the LR
Test vary with the number of unknown genotypes and
underlying sample sizes, while the Fsp scores do not.

As a specific example of a real-world application, we
apply our LR Test framework to 1.7 million SNPs
from the recently speciated malaria vectors Anopheles
gambiae and Anopheles coluzzii from [5]. These data
derive from a single chromosome arm (2L) contain-
ing relatively strong regions of differentiation [10, 15].
Identifying specific sequence-based differences is highly
valuable for molecularly characterizing such closely-
related species and ultimately to help understand spe-
ciation in these model systems [13]. Even though PCA
analysis of samples from the two species has shown
strong evidence for strong similarity within species



and clear differences between species [15], localizing
key variants is ongoing work [14]. At a significance
level of 1%, we find that as many as 522 positions on
chromosome arm 2L are statistically significant after
correcting for multiple comparisons. Of 1,633 positions
with the highest possible Fsr score (1), only twenty
overlap with this set of 522 significant positions.

This result suggests that the adjusted LR Test may
be more specific than averaging SNP Fg7 values across
larger windows as performed by [10] and can better
address unknown and heterogeneous genotypes than
Fgp alone. We provide a reference implementation
using scikit-learn in Asaph, a variant analysis toolkit.
Note that since this framework uses common methods,
it can also be easily implemented using alternative
programming language/libraries if needed.

2 Methodology

2.1 Data sets

Details on the sequencing and variant calling (in-
cluding filtering) for the 16 mosquito samples from
Cameroon studied here are given in [5,10,15].

As part of the assessment of our method vs. Fgr,
we simulated a single variant. We used fifty individuals
per population for the sweep over unknown genotypes,
and for each combination, we converted the appropriate
number of samples’ genotypes to unknown genotypes
before computing the two metrics. For the sweep
over population sizes, we increased population sizes in
multiples of two.

2.2 Analytical Equations for
Probabilities

In diploid organisms, SNPs for individual samples can
be thought of as multi-sets over the nucleotides A, T, C,
and G. For example, the homozygous A, homozygous
T, and heterozygous genotypes would be represented as
the following multi-sets, respectively: {4, A}, {T,T},
and {A,T}.

We can calculate the probability that an individual
belongs to population one of two conditioned on its
genotype as follows:
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For unknown genotypes, we make the uninformative
assumption that the unknown genotype could be any
of the possible genotypes with equal probability. In
particular, we do not want to assume that we can
accurately infer the true genotype of an unknown
genotype from the known genotypes among sampled
individuals. Additionally, we do not want to infer
the class probability based on the distribution of the
unknown genotypes across the classes. Note that
this is a significant difference between this method
traditional human GWAS analysis, because in the latter
imputation is often required prior to running LR Tests.

Mathematically, we can define the conditional class
probability for the unknown genotype as the union of
of the conditional class probabilities for each of the
known genotypes. Note that the known genotypes are
mutually exclusive.
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2.3 Logistic Regression Model

Assume that we have N samples with V biallelic
positions. Each position has a reference allele and an
alternative allele, and at each position, each sample
has one of three genotypes (homozygous reference,
homozygous alternate, or heterogyzous).

For each position, we encode the variants as a feature
matrix X with dimensions N x 3. We represent each
genotype for each position as one of three categorical
variables. If sample i has the homozygous reference
genotype at position k, then we set X; ; = 1. If sample
¢ has the homozygous alternate genotype at position k,
then we set X; o = 1. If sample 7 has the heterozygous
genotype at position k, then we set X; 3 = 1. If the
genotype of sample 7 is unknown at position k, then
the row contains zeros in every column.

From the samples’ population labels, we define a
N-length vector y of class labels. We then fit the
parameters of a Logistic Regression model with the
form [7):

1

PO =X = froerrx vy

where y; is the class label and X; is the feature vector
for a single sample ¢ and (3 is the P-length weight vector



and (y is the intercept. We trained the model using
Stochastic Gradient Descent (SGD) and an Lo penalty.
(For the experiments in this paper, we performed 10,000
epochs of training for each model.)

In the “standard case”, we fit a LogReg model on the
feature matrix X for each position and vector y of class
labels described above.

To adjust the conditional class probabilities, we
employ the following revised training procedure. We
form a new 3N x 3 feature matrix X and a new 3N
vector y of class labels by duplicating each data point
three times (since there are three possible genotypes).
For unknown genotypes, we set each copy to one of
the three known genotypes. Thus, the conditional class
probabilities for the known genotypes will incorporate
a key assumption of our method: that each unknown
genotype has an equal probability of being one of the
known genotypes (i.e., “uninformative prior.”). We
also set the LogReg model intercept to the fraction of
samples in class one versus all of the samples and fix the
intercept so it is not altered during the SGD training.
This ensures that the conditional class probabilities for
the unknown genotypes are determined by the ratio of
class one samples to all samples. Lastly, we train the
weights of the LogReg model using SGD.

Note that for predicting the conditional class prob-
abilities, we utilize the original feature matrix X and
class labels y, regardless of training method.

2.4 Likelihood-Ratio Test

The log likelihood for the Logistic Regression model
is given by [7]:

N
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To perform the Likelihood-Ratio Test, two LogReg
models are trained. The first model (the alternative),
trained as described in Section 2.3, contains additional
independent variables (features) not in the null model.
(In our case, the null model only contains the intercept
and thus, predicts the conditional class probabilities
using the ratio of class one samples to all samples.)
The weights (1, 5o) from the two models are used to
compute the log likelihoods. The difference G between
the two is calculated by:

G =2(log L(8", Bp| X", y) — log L(5°, 331 X°,y)) (6)

The p-value for the difference in log likelihoods is
calculated using the x? distribution:

p = Pl*(df) > G] (7)

where df is the difference in the number of degrees of
freedom (weights) between the two models.

2.5 Corrected Significance Level

We used a significance level of a« = 0.01 (1%).
Following the method of [6], we performed a PCA
analysis of the Anopheles SNPs and found that 15
principal components were needed to explain 99.9% of
the variance. Using their modified version of Bonferroni
correction, we used 0.01/15 = 6.66 x 10~ as the cutoff.

2.6 Ranking SNPs with Fgp

To rank the SNPs, we first calculated the the Fgr
score for each position using VCFTools [3]. Scores
which were invalid (nan) or negative were to set to zero.
Then, we sorted the SNP positions in descending order
by their Fgr scores.

2.7 Asaph

Our method was evaluated using Asaph, our toolkit
for variant analysis. Asaph was implemented in Python
using Numpy / Scipy [18], Matplotlib [9], and Scikit
Learn [16] and is available at https://github.com/
rnowling/asaph under the Apache Public License v2.

3 Experimental Results

3.1 Genotypes for Many Anopheles
Variants are Unknown

To motivate our work, we analyzed the prevalence of
unknown genotypes among the /1.7 million positions
described in Section 2.1. For each site, we counted
the number of unknown genotypes per species, which is
given as a 2D histogram (with log counts) in Figure la.
The unknown genotypes seemed to occur equally in
both species. Fewer than 3% of all positions have known
genotypes for each sample, while for as many as 25%
of the positions, none of the genotypes are known for
any of the samples in at least one population (data not
shown).

We also analyzed the presence of unknown genotypes
across the 2L chromosome arm. We counted the
number of unknown genotypes per site and computed
averages over non-overlapping 100 Kbp windows (see
Figure 1b. While, the number of unknown genotypes
was highest from the beginning of the inversion region
(at 25 Mbp) to the end of the arm, on average more
than half of the genotypes per site are unknown. Thus,
unknown genotypes are highly common for this data
set, which makes downstream analysis challenging.



Figure 1: Analysis of Sites on 2L with Unknown
Genotypes. (a) Histogram (log;,) of Unknown
Genotypes Per Site By Species (b) Average Number of
Unknown Genotypes Per Site in non-overlapping 100
Kbp Windows
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3.2 Mean Absolute Error of Proposed
Training Method

We also evaluated the agreement of the conditional
class probabilities computed by Logistic Regression
(LogReg) models. For each of 800 SNPs with between
zero and all-but-one unknown genotypes sampled from
the Anopheles data set, we trained models with the
standard approach and with our proposed approach
described in Section 2.3. We calculated the probability
for each of the four possible genotypes using each of
the models. Lastly, we calculated the mean absolute
error (MAE), broken down by genotype, between the
probabilities from the LogReg models and the analyti-
cal probabilities.

The MAEs are reported in Table 1. With the
standard training method, the LogReg model achieves a
MAE as large as 0.23. With the new training approach,
the largest MAE is as low as 0.0081. For the case of
the unknown genotype, the error is reduced to 0, as
expected.

Table 1: Mean Absolute Errors (MAE) of Analytical vs
Logistic Regression-Estimated Probabilities

Standard | Corrected

Homo. 1 | 1.3 x1071 | 1.5x10°4

Homo. 2 | 1.3 x1072 | 8.1x1073

Het. 1.7x1072 | 81 x1073
Unknown | 2.3 x 10™1 0.

3.3 Varying of the Number of Samples
and Unknown Genotypes

The Likelihood-Ratio Test (LR Test) differs from Fgp
in two significant ways: its p-value incorporates the
number of the samples and, because of our proposed
training method, the percentage of unknown genotypes

is also factored in. We illustrate these differences in
comparisons on simulated data (see Section 2.1).

First, we considered a fixed difference where samples
in one class have one homogeneous genotype and
samples in the second class have the other homogeneous
genotype. We swept over different combinations of
percentages of samples with unknown genotypes from
each population. FExcept for cases where all of the
samples in a single class have unknown genotypes, the
Fs7 scores for all combinations are one. In contrast, the
LR Test p-values increase as the percentage of unknown
genotypes increase, as desired (see Figure 2).

In the second comparison, we re-considered the fixed
difference, but with different combinations of sample
sizes in each class. We calculated the LR Test p-value
and Fgr score for each combination (see Figure 3). As
before, the Fsr scores for each combination were one,
except when one of the populations had zero samples.
The LR Test p-values decreased as the number of
samples increased.

Figure 2: Adjusted Likelihood-Ratio Test p-Values
(—logy) and Fgr Scores for Different Percentages of
Unknown Genotypes for a Fixed Difference
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Figure 3: Adjusted Likelihood-Ratio Test p-Values
(—logyg) and Fsr Scores for Different Combinations
of Sample Sizes for a Fixed Difference
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3.4 Analysis of SNPs from the
Anopheles Data set

We applied the adjusted Likelihood-Ratio Test (LR
Test) to perform single SNP association tests on two
data sets of SNPs from the Anopheles gambiae and
Anopheles coluzzii species. We first calculated ¢-values,
a measure of significance in terms of the false discovery
rate (FDR) [17,19]. None of the SNPs, however,
satisfied a g-value threshold of 0.01 (FDR of 1%).

Next, we then used the PCA-based method of [6] to
determine a less conservative significance threshold (see
Section 2.5). Our chosen significance level of a = 0.01
(1%) was corrected to 0.01/15 = 6.66 x 10~%. At that
level, 522 SNPs passed the revised threshold.

For initial validation, we “binned” these 522 SNPs
across the 2L chromosome in non-overlapping 10 Kbp
windows—combining our method with that of [10]—
and found three interesting regions: 10 Mbp, 25
Mbp, and 40 Mbp. Significantly, the 25 Mbp region
and 40 Mbp region corresponds to the 2La inversion
boundaries, the frequencies of which are known to differ
between these samples [10,15]. The high concentration
in the 10 Mbp region is a novel result, and has been
provided to our biological collaborators.

We also briefly analyzed the top 20 (as ranked by
their p-values) statistically-significant SNPs individu-
ally. The first- (position 25,396,564), third- (posi-
tion 21,707,904), and fifth-ranked (position 25,403,885)
SNPs are located within the resistance to dieldrin
(Rdl) gene, which has been previously associated with
insecticide resistance in A. gambiae and other insects
[4,10].

Figure 4: Counts of 522 Statistically-Significant SNPs
Appearing in 10 Kbp Windows Across 2L Chromosome
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We compared the adjusted LR Test p-values to the
Fsr scores for the SNPs (see Figure 5). Notably, 1,633
SNPs have Fgr scores of 1, but only 20 were found in
the set of 522 statistically-significant SNPs. The small
number of statistically-significant SNPs with Fsp = 1
was most likely due to unknown genotypes.

Additionally, the Fgr scores of some of the 522
statistically-significant SNPs were as low as 0.2. We
attribute this result to our categorical encoding scheme,
which considers genotypes, not alleles. In fact, the
uncovered 2La inversion breakpoints are only fixed in
one species and by definition have non-ideal Fsp scores.

Figure 5: Likelihood-Ratio Test p-Values vs Fgp
Scores. Red dashed line indicates significance
threshold.

LR Test p-value (log)

4 Discussion and Conclusion

The Likelihood-Ratio Test (LR Test) has several
properties that make it desirable for population genetics
analysis. In particular, unlike the more commonly used
Fs1 metric, the LR Test provides p-value that can be
used to identify statistically-significant variants relative
to a null model based purely on class probabilities.

Challenges in the sequencing and assembly of insect
genomes results in a high propensity for unknown
genotypes, as illustrated in Section 3.1. Significantly,
we demonstrated in Section 3.3 that our LR Test
framework can adjust the calculated p-value in line
with the percentage of unknown genotypes and smaller
sample sizes to address unknown values without re-
quiring highly difficult and often impossible genotype
imputation these species.

Using the adjusted LR Test, 522 Anopheles SNPs
were found to be statistically significant. Since Fgr
only uses population frequencies and ignores unknown
genotypes in their calculation, only 20 of the 1,633 SNPs
with Fgr = 1 were among the 522 significant SNPs.
Significantly, treating the heterozygous genotype sepa-
rately may help uncover important non-fixed differences
such as the ecologically important 2La inversion [10]
rediscovered here.

When used in place of Fsp, the adjusted LR Test
has the potential to substantially reduce false positives
without requiring combining multiple loci together, as
is often down with window analysis (see [10]). As
such, the adjusted LR Test could significantly impact



population genetics by ranking specific sequence-based
differences, which will be essential to quickly character-
izing and ultimately helping understand speciation in
highly similar species.
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