
Detecting Chromosomal Inversions from Dense SNPs by
Combining PCA and Association Tests

Ronald J. Nowling
Marquette University
Milwaukee, Wisconsin

ronald.nowling@marquette.edu

Scott J. Emrich
University of Tennessee
Knoxville, Tennessee
semrich@utk.edu

ABSTRACT
Principal Component Analysis (PCA) of dense single nucleotide
polymorphism (SNP) data has wide-ranging applications in pop-
ulations genetics, including detection of chromosomal inversions.
SNPs associated with each PC can be identified through single-SNP
association tests performed between SNP genotypes and PC coor-
dinates; this approach has several advantages over thresholding
loading factors or sparse PCA methods.

Insect vector SNP data often have a high proportion of unknown
(uncalled) genotypes, however, that cannot be reliably imputed and
prevent the direct usage of association tests. Building on our previ-
ous work, we propose a novel method for adjusting the association
tests to handle these unknown genotypes.

We demonstrate the utility of the method through two applica-
tions: detecting chromosomal inversions and characterizing differ-
entiation processed captured by PCA. When applied to SNP data
from the 2L and 2R chromosome arms of 34 karyotyped Anopheles
gambiae and Anopheles coluzzii mosquitoes, our method clearly
identifies the 2La, 2Rb, 2Rc, 2Rj, and 2Ru inversions. Using our
method to identify SNP associated with 2L-PC3, we observed one
of the two insecticide-resistance variants in the Rdl gene; our re-
sults suggests that the PC is capturing differentiation driven by
insecticide usage.
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1 INTRODUCTION
Principal Component Analysis (PCA) of SNPs is widely used in
population genetics for visualizing the relationships between sam-
ples [20], correcting for stratification in genome-wide association
studies [24], and with clustering to determine population structure
[14]. While PCA is often treated as a one-way transformation, it
is possible and sometimes useful to identify the SNPs associated
with each principal component (PC). The key insight is that each
PC clusters a set of features that are strongly correlated with one
another but weakly correlated with features outside the set. For
example, Paschou, et al. [22] demonstrated that PC-SNP correla-
tions can be used to identify a small set of SNPs that can be used as
effective markers to associate individuals with populations.

Although selecting variables by thresholding weights based on
magnitude is frequently used in practice (e.g., [22, 27]), it can lead
to misleading results [3]; loading factors vary based on the number
and distribution of features since all PC vectors are normalized.
Sparse PCA techniques [36] have been proposed that employ reg-
ularization techniques such as lasso [31] and elasticnet [35]. Such
regularization techniques, by design, choose a subset of the features,
preventing recovery of all of the variables associated with a given
PC.

Single-SNP association tests, on the other hand, provide p-values
that estimate significance consistently, irrespective of the number
or distribution of features. Further, these tests recover all of the
variables and without bias resulting from correlation with other
SNPs. In this setup, tests are performed between each SNP and each
PC coordinate. The genotype is used as the outcome variable, while
the PC coordinate is used as the predictor.

In our previous work [21], we noted that insect vector data sets
tend to have a large number of unknown (uncalled) genotypes and
very small sample sizes. Unlike in human data sets, these unknown
genotypes cannot be reliably imputed. Since the genotypes are used
as the labels (outcome variables) here, unknown genotypes must
be handled in order to perform association tests.

Previously, we proposed an adjusted likelihood-ratio test that
uses an uninformative (uniform) prior over the unknown genotypes.
When compared with FST or a standard likelihood-ratio test, our
adjusted test is significantly better at avoiding the large number of
false positives. In that case, we were able to up-sample the training
set, while using the original data for the likelihood evaluations.
Here, we need a different strategy: up-sample the data set, impute
the unknown genotypes in a one-to-one relationship to the sample
copies, and then re-weight the samples in the likelihood evaluation
so that the estimated p-values are consistent with the original
number of samples. Our method is implemented and made available
through our open-source variant analysis toolkit Asaph.
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To demonstrate the utility of this approach, we apply the method
to identifying chromosomal inversions and characterizing differ-
entiation processes in the malaria vectors Anopheles gambiae and
Anopheles coluzzii. Chromosomal inversions are thought to play an
important role in ecological adaptation by enabling the accumula-
tion of beneficial alleles [8, 15]. For example, the 2La inversion in
various species of the Anopheles gambiae complex has been associ-
ated with thermal tolerance of larvae [26], enhanced desiccation
resistance in adult mosquitoes [9], and susceptibility to at least one
species (Plasmodium falciparum) of malaria [25].

Given long-standing research on Anopheles gambiae inversions,
the 34 Anopheles gambiae and Anopheles coluzzii samples from
[7] samples are karyotyped for the 2La inversion, which has the
strongest PCA-determined signal [33], but not for known inver-
sions on 2R (see [18]). Chromosome 3 has no known inversions
in these species or other strong population-linked signals and can
serve as a negative control. These characteristics and ongoing large-
scale sequencing efforts across Africa make such SNP data ideal for
developing finer-grained prediction.

Although a number of computational methods can uncover large-
scale inversion breakpoints using either paired-end sequence data
or long-range reads/contacts (e.g., [4, 5, 10, 28, 30, 34]) the most
confident inversion detection is still performed using experimental
karyotying. We focus on detecting potentially adaptive inversions
using only dense single-nucleotide polymorphism (SNP) data. Pre-
vious methods rely on the calculation of linkage disequilibrium
(LD) in windows to identify blocks of SNPs likely to belong to an
inversion [1, 2, 29].

Alternatively, Ma, et al. observed that chromosomal inversions
cause a “three-stripe pattern” to appear in PCA of SNPs [16, 17].
When applied to our data (see Section 3.1), however, the PCA projec-
tion plots alone are ambiguous. We demonstrate, using our method,
that identifying the SNPs associated with the PCs enables more
reliable detection of inversions. In Section 3.2, we validate that our
method can successfully identify the SNPs associated with each
PC using simulated data. When the p-values of the extracted SNPs
are plotted along the chromosome arms, chromosomal inversions
are clearly and unambiguously revealed. In Section 3.3, we confirm
that our method is able to detect the 2La inversion and does not
generate false positives on the 3 and X chromosomes using the
34 Anopheles samples. We then applied our the method to detect-
ing poorly-characterized inversions on the 2R chromosome arm in
Section 3.4.

Lastly, in Section 3.5, we applied ourmethod to characterizing the
differentiation captured by PCA through the associated SNPs. We
tested associations between each PC and the species and geographic
location labels for our samples. Differences captured by 2L-PC3
were not associated with any of our labels. We used our method
to identify the SNPs associated with the PC. We observed that one
of the SNPs is an insecticide-resistance mutation in the Rdl gene,
suggesting that the PC captures differences driven by insecticide
usage.

2 METHODS
2.1 Data Sets
For our validation on simulated data, We simulated 300 biallelic
SNPs across a single artificial “chromosome” for 100 individuals to
represent different karyotypes. The individuals were divided into
four groups. By default, all of the SNPs chosen to be uncorrelated
with populations labels and frequencies of 45% homozygous A, 45%
homozygous T, and 10% heterozygous. For group 1, all of the the
SNPswere uncorrelated. For group 2, SNPs 101 - 200 had frequencies
of 95% homozygous A, 2.5% homozygous T, and 2.5% heterozygous.
For group 4, SNPs 201-300 had frequencies of 90% homozygous A,
5% homozygous T, and 5% heterozygous. Lastly, SNPS 101 - 300 for
group 3 had the frequencies of both groups 2 and 4.

For the analysis on real data, we used biallelic SNPs on the
2 (347,510 positions for 2L, 394,487 positions for 2R), 3 (346,391
positions on 3R), and X (72,003) chromosomes from 34 Anopheles
gambiae and Anopheles coluzzii samples from [7]. Details on the
sequencing and variant calling (including filtering) are given in [7].

2.2 Encoding SNP Genotypes
Assume that we have N samples with V positions with biallelic
variants. Each position has a reference allele and an alternative
allele, and at each position, each sample has one of three genotypes
(homozygous reference, homozygous alternate, or heterogyzous).

We encode the variants as a feature matrix X with dimensions
N × 3V . If sample i has the homozygous reference genotype at
position k , then we setXi,3k+1 = 1. If sample i has the homozygous
alternate genotype at positionk , then we setXi,3k+2 = 1. If sample i
has the heterozygous genotype at position k , then we set Xi,3k+3 =
1. If the genotype of sample i is unknown at position k , then we do
nothing.

2.3 Principal Component Analysis
Principal component analysis (PCA) of the feature matrix X pro-
duces a 3V × P matrix W of principal components and a N × P
matrix T of projected coordinates for the samples such that:

T = XW

As directly computing PCA would involve computing a 3V × 3V
co-variance matrix, we used a randomized truncated SVD imple-
mentation from Scikit Learn [23]. Whitening was applied to the
resulting PCs.

2.4 Single-SNP Association Tests
A single association test is performed for each combination of
principal component (PC) j and SNP position k . Each sample i
can have one of three possible genotypes for a given position k .
We use a Logistic Regression model for each possible genotype
such that each LR model predicts the probability that a sample i
has a given genotype д; in other words, we use a one-versus-all
scheme to implement multinomial Logistic Regression. The Logistic
Regression models are written as [11]:

Pд(yi,д) =
1

1 + exp(−β1Ti, j + β0)
(1)



where yi,д is binary indicator as to whether sample i has geno-
type д, Ti, j is the coordinate for a single sample i along PC j, β1
is the weight, and β0 is the intercept. We train the models using
Stochastic Gradient Descent (SGD) and an L2 penalty. (For the ex-
periments in this paper, we performed 10,000 epochs of training
for each model.)

The likelihood for the multinomial Logistic Regression model is
given by [11]:

L(β , β0 |T, y) =
N∏
i=1

∏
д

P(yi,д |Ti, j )yi,д (2)

To perform the Likelihood-Ratio Test, two sets of Logistic Re-
gression models are trained in total. The models in the alternative
set contain additional independent variables (features) not in the
null model. In our case, the set of null models only contain the
intercept and thus, predicts the conditional class probabilities using
the ratio of one class of samples to all samples. The weights (β1, β0)
from the two models are used to compute the log likelihoods. The
difference G between the two is calculated by:

G = 2(logL(β1, β0 |T, y) − logL(β0 |y)) (3)

The p-value for the difference in log likelihoods is calculated
using the χ2 distribution:

p = P[χ2(d f ) > G] (4)

where d f is the difference in the number of degrees of freedom
(weights) between the two models.

2.5 Adjusted-Likelihood Ratio Test for
Unknown Genotypes

It is common for genotypes to be unknown (uncalled). In our previ-
ous work [21], we proposed an adjusted likelihood-ratio test that
assumes that unknown genotypes are distributed according to an
uninformative (uniform) prior to avoid learning on the missing
data. In that case, we were able to adjust the training set but use
the original set of samples for the likelihood function calculation.
While we previously used the genotype as the predictor and the
population labels as the outcome variable, we use the genotype as
the outcome variable and the PC coordinate as the predictor here,
necessitating a different strategy.

To handle the unknown genotypes, we chose to deterministically
upsample the samples, impute unknown genotypes, and then re-
weight the samples in the likelihood. In particular, if we have M
genotypes, we createM copies of each sample. (In our case,M = 3
since we are working with biallelic SNPs with three genotypes.)
If the genotype is known, the copies have the same genotype as
the original. Otherwise, we make the conservative assumption that
there is an uninformative (uniform) prior over the genotypes and
impute the copies so that there is a one-to-one relationship between
the copies and possible genotypes.

Since we increased the number of samples, we need to weight
the samples so that the calculated p-values are consistent with the
original number of samples. The modified likelihood function is
then:

L(β, β0 |T, y) =
N∏
i=1

∏
д

P(yi,д |Ti, j )yi,д/M (5)

2.6 Asaph: an Open-Source Toolkit for Variant
Analysis

We implemented our method in Asaph, our open-source toolkit for
variant analysis. Asaph is implemented in Python using Numpy
/ Scipy [32], Matlotlib [12], and Scikit-Learn [23] and is available
at https://github.com/rnowling/asaph under the Apache Public Li-
cense v2.

3 RESULTS
3.1 PCA Projections Insufficient for Detecting

Inversions
We performed PCA of the SNPs on the 2L chromosome arm of
34 Anopheles gambiae and Anopheles coluzzii samples from Burk-
ina Faso, Cameroon, Mali, and Tanzania. The 2L chromosome arm
contains a large inversion (2La), and these samples have been previ-
ously karyotyped for this inversion. Four PCs explained most of the
variation on this arm. We next tested the obtained PCs against the
known 2La karyotype labels (see Table 1). PC1 had a statistically-
significant association with a p-value of 6.07 × 10−11, while the
three other PCs had p-values around or greater than 1.00 × 10−3.
We thus expect that PC1 captures most of the 2La inversion signal
in these data. Based on the work of [16], we would expect to see
a “three-stripe” pattern indicative of an inversion in the PCA pro-
jections for 2L. Instead, we found that the PCA projections were
ambiguous (see Figure 1a), illustrating that it can be difficult to
identify inversions from PCA projections alone.

We then performed PCA of SNPs on the 2R chromosome arm
of the same 34 Anopheles gambiae and Anopheles coluzzii samples,
which can contain up to four four smaller inversions: 2Rb, 2Rc, 2Rj,
and 2Ru. As with arm 2L, four PCs explained most of the variation,
and these PCA projections were also ambiguous with respect to a
“three-stripe pattern” (see Figures 1c and 1d).

3.2 Validation on Simulated Data
To validate our method, we applied it to well-characterized simu-
lated data (see Section 2.1). We simulated two orthogonal processes
driving differentiation in 200 out of 300 variants along an artificial
chromosome. The resulting individuals formed four clusters.

PCA analysis on these simulated SNPs indicated that the ex-
plained variance ratios of the first two PCs explained most of the
variation (see Figure 2a) and that the four groups were clearly clus-
tered in the PCA projection (see Figure 2b). When we performed
association tests for PCs 1 and 2 and plotted the p-values along
the artificial chromosome (see Figures 2c and 2d), PC1 captured
variations in positions 101 to 200, while PC2 captured variations in
positions 201 to 300, as expected.

3.3 Validation on Chromosome Arms with
Known Inversion Karyotypes

We applied our method to SNPs on the 2L chromosome arm of 34
Anopheles gambiae and Anopheles coluzzii samples from Burkina
Faso, Cameroon, Mali, and Tanzania. Based on the association tests
versus the known karyotype labels in Section 3.1, we expected a
single strong PC underlying this inversion. For each of the four
previously uncovered PCs (see above), we plotted the p-values of
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Table 1: Association Tests Between Principal Components and 2La Inversion Karyotypes, Species, and Geographic Locations
of Samples. We report p-values and accuracies.

2La Species Burkina Faso Cameroon Mali
2L-PC1 2.09 × 10−14 / 100.0% 1.29 × 10−2 / 79.4% 3.20 × 10−2 / 79.4% 1.52 × 10−8 / 94.1% 5.42 × 10−9 / 97.1%
2L-PC2 1.19 × 10−3 / 52.9% 4.86 × 10−9 / 91.2% 6.59 × 10−1 / 79.4% 4.16 × 10−2 / 52.9% 3.29 × 10−1 / 76.5%
2L-PC3 1.48 × 10−1 / 44.1% 3.24 × 10−4 / 76.5% 4.17 × 10−1 / 79.4% 8.31 × 10−2 / 70.1% 6.76 × 10−1 / 76.5%
2L-PC4 4.49 × 10−2 / 52.9% 2.63 × 10−1 / 61.8% 5.86 × 10−8 / 94.1% 1.00 × 100 / 52.9% 1.38 × 10−4 / 88.2%
2R-PC1 8.23 × 10−11 / 100.0% 8.65 × 10−1 / 79.4% 1.59 × 10−6 / 85.3% 1.77 × 10−9 / 100.0%
2R-PC2 3.41 × 10−1 / 67.6% 2.27 × 10−2 / 73.5% 4.60 × 10−1 / 29.4% 1.39 × 10−9 / 100.0%
2R-PC3 3.05 × 10−4 / 73.5% 4.58 × 10−1 / 79.4% 6.96 × 10−3 / 67.6% 2.56 × 10−1 / 76.5%
2R-PC4 5.67 × 10−1 / 67.6% 3.12 × 10−7 / 94.1% 4.08 × 10−2 / 73.5% 1.00 × 100 / 76.5%
3R-PC1 1.17 × 10−5 / 79.4% 2.53 × 10−1 / 79.4% 6.47 × 10−8 / 88.2% 1.58 × 10−1 / 73.5%
3R-PC2 2.19 × 10−4 / 76.5% 9.70 × 10−2 / 79.4% 2.59 × 10−1 / 55.9% 1.41 × 10−9 / 100.0%
3R-PC3 2.36 × 10−1 / 64.7% 7.92 × 10−3 / 85.3% 2.37 × 10−1 / 64.7% 2.25 × 10−3 / 76.5%
3R-PC4 5.67 × 10−3 / 67.6% 1.08 × 10−4 / 91.2% 4.13 × 10−3 / 70.6% 1.68 × 10−1 / 73.5%
X-PC1 9.12 × 10−7 / 88.2% 4.77 × 10−1 / 79.4% 9.19 × 10−8 / 79.4% 3.14 × 10−2 / 67.6%
X-PC2 1.22 × 10−3 / 79.4% 2.07 × 10−1 / 79.4% 5.69 × 10−1 / 35.9% 3.65 × 10−9 / 100.0%
X-PC3 6.07 × 10−3 / 64.7% 4.08 × 10−1 / 79.4% 4.59 × 10−2 / 64.7% 1.60 × 10−4 / 82.4%
X-PC4 2.58 × 10−1 / 76.5% 1.69 × 10−7 / 97.1% 1.11 × 10−2 / 79.4% 8.43 × 10−1 / 67.5%

(a) 2L, PCs 1 and 2 (b) 2L, PCs 3 and 4 (d) 2R, PCs 3 and 4(c) 2R, PCs 1 and 2

Figure 1: PCA Projections of SNPs on the 2L and 2R Chromosome Arms of 34 Anopheles samples

(a) Explained Variance
Ratios

(b) PCA Projections (c) PC1 (d) PC2

Figure 2: Simulated Data for 100 Individuals Divided Among Four Groups

each SNP along the chromosome arms (see Figure 3a–d). The plots
illustrated that, as expected, SNPs located in the 2La inversion
region (20 – 42.5 Mbp) were strongly associated with PC1 but not
the other PCs. For example, SNPs above a conservative cut off of 6
(-log10 of the probability) are located only in the known 2La interval.
SNPs outside of that region were not as strongly associated with
PC1. Our method is thus able to identify the 2La inversion without
explicit karyotype information by exploiting the characteristics of
PC1 of these SNP data.

To validate that our method does not produce false positives,
we applied our method to SNPs on the X and 3R chromosome
arms, which are not known to contain any inversions (see [7]). As
expected, no inversions or inversion-like patterns were observed
when the SNPs associated with the first four PCs were plotted along
the chromosome arms (see Figures 3e–h and 3i–l)).



(a) 2L-PC1 (b) 2L-PC2 (c) 2L-PC3 (d) 2L-PC4

(e) X-PC1 (f) X-PC2 (g) X-PC3 (h) X-PC4

(i) 3R-PC1 (j) 3R-PC2 (k) 3R-PC3 (l) 3R-PC4

(m) 2R-PC1 (n) 2R-PC2 (o) 2R-PC3 (p) 2R-PC4

Figure 3: p-values of SNPs on the 2L (a–d), X (e–h), 3R (i–l), and 2R (m–p) Chromosome Arms of 34 Anopheles samples

3.4 Identifying 2R Inversions in Samples with
Unknown Karyotypes

We applied our method to SNPs on the 2R chromosome arm of the
same 34 Anopheles gambiae and Anopheles coluzzii samples. The
2R chromosome arm contains four smaller inversions (2Rb, 2Rc,
2Rj, and 2Ru). These samples have not been karyotyped for the 2R
inversions and both the divergence and segregation differences are
not as great as the 2La inversion for complex biological reasons
(see [7]).

Even so, PC2 captured the 2Rc, 2Rj, and 2Ru inversions with
relatively higher significance on this arm (but lower than 2La; see
Figure 3n), while PC4 captured the 2Rb inversion (see Figure 3p).

It appears that the other PCs did not show any evidence of the
inversions (see Figures 3m and 3o).

3.5 Characterizing PCs with No Associations to
Known Labels

Beyond inversions, we applied our method to characterizing the dif-
ferentiation captured by PCA from the associated SNPs. We began
by testing associations between the PCs, species, and geographic lo-
cations (Burkina Faso, Cameroon, and Mali) given their importance
in prior analyses [15].

2L-PC1 had some associationwith Cameroon versus non-Cameroon
samples, while 2L-PC1, 2R-PCs 1 and 2, 3R-PC2, and X-PC2 were all



strongly associated with Mali versus non-Mali samples. Likewise,
2L-PC4, 2R-PC4, and X-PC4 were strongly associated with Burkina
versus non-Burkina samples, while 3R-PC4 was moderately associ-
ated. 2R-PC1 was strongly associated with differences between the
species, while 2L-PC2 and X-PC1 were moderately associated.

Our independent chromosome arm observations are consistent
between arms as well as prior work. For example, the first two PCs
were often associated with Mali, while the fourth PC was usually
associated with Burkina Faso. Although the class imbalance (16
Cameroon, 8 Mali, 7 Burkina Faso, and 3 Tanzania samples) in the
data may be affecting the amount of variance explained by each
PC, and thus their orderings, this result is also consistent with the
large amount of standing variation and limited gene flow observed
previously [19].

Notably, the third PC on all arms was only weakly associated
with the tested labels, suggesting an alternative process is driv-
ing these underlying differences between samples. We used our
method to identify SNPs associated with the PCs on 2L. The A296G
insecticide-resistance variant ([6, 13], located at position 25,429,236
on 2L) in the Rdl gene (AGAP006028) was associated with 2L-PC3
(p-value of 8.24 × 10−5 versus a Bonferroni-corrected significance
level of 0.01/(34 − 1) = 3.03 × 10−4) but not the other PCs. Insec-
ticides have previously been shown to be a strong force driving
differentiation [7, 18]. We therefore hypothesize that at least 2L-
PC3, but possibly all of the third PCs of the chromosome arms, is
(are) associated with differences due to exposure and resistance to
the insecticide dieldrin.

4 DISCUSSION AND CONCLUSION
Principal Component Analysis (PCA) of SNPs is widely used in pop-
ulation genetics for visualizing the relationships between samples
[20], correcting for stratification in genome-wide association stud-
ies [24], and with clustering to determine population structure [14].
We proposed a novel method for identifying SNPs associated with
each PC using single-SNP association tests. Previously, association
tests would have been problematic due to unknown (uncalled) geno-
types; we workaround this limitation by introducing an adjusted
likelihood-ratio test.

To demonstrate the utility of this method, we first applied it
to detecting chromosomal inversions from dense SNP data. Chro-
mosomal inversions have been found to play a significant role in
the adaptation of Anopheles species. Although previous work [16]
found that inversions cause a distinctive “three-stripe pattern,” that
work used human variant data with over 1,000 samples. Insect-
focused studies tend to have much smaller sample sizes, and we
suspect using only 34 samples is a significant contributing factor to
the difficulty in using PCA projections to detect inversions in our
data (see Section 3.1).

Our new method, however, combines PCA and single-SNP as-
sociation tests to help overcome this limitation. In Section 3.2, we
validated that our method works as expected on simulated data.
We then applied our method to SNPs from 34 previously published
samples. When the p-values of SNPs associated with each arm 2L
PC were plotted along the chromosome, the 2La inversion was
clearly and unambiguously captured by 2L-PC1 (see Section 3.3).

When applied to the 3 and X chromosomes, our method did not
detect any inversions, as expected.

We then applied our method to SNPs on the 2R chromosome
arm (see Section 3.4). Note that neither the karyotypes nor their
frequencies for the four smaller inversions on 2R are known for
these samples. Even so, the four 2R inversions were clearly and
unambiguously captured, although with relatively lower SNP-based
significance relative to 2La. When combined geographic location
associations (see Section 3.5), we hypothesize that karyotypes of
the 2Rc, 2Rj, and 2Ru inversions are associated with Mali versus
non-Mali samples and 2Ru inversion are associated with Burkina
Faso versus non-Burkina Faso samples.

Our method has several advantages and disadvantages with
respect to detecting inversions. We have shown that our method is
more sensitive and accurate than PC projections alone. Althoughwe
expect that long reads (Oxford Nanopore, PacBio) may have a role
in computational karyotyping, existing methods require completely
assembled breakpoints. Our method is less useful at present for
data sets with incomplete assemblies—we rely on the assembly
to determine the spatial relationships of the SNPs—but we also
have shown conservative p-value cutoffs can clearly distinguish
inversion regions. Applying this method to other insects with well-
characterized inversions like members of the Drosophila genus is
left for future work. Finally, although our current implementation
does not provide a mechanism for karyotyping samples in silico,
preliminary results indicate that we can do so by clustering samples
along PCs (data not shown).

To demonstrate utility beyond inversions, we used our method
to characterize 2L-PC3 from its associated SNPs. We tested asso-
ciations between the PCs geographic location and species labels
given their importance in prior analyses [15]. The third PCs had
no strong or moderate associations with the geographic or species
labels. When we analyzed the SNPs associated with the 2L PCs,
however, we observed that an insecticide-resistance mutation in
Rdl was strongly associated with 2L-PC3 alone. We hypothesized
that 2L-PC3 might be capturing differentiation due to insecticide
resistance and exposure. As illustrated by this example, we antic-
ipate that our method will be widely useful beyond the original
objective of detecting inversions.
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