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Abstract—Beyond automated classification, supervised
machine-learning models can be interpreted to find which
features or combination of features distinguish sets of classes.
Logistic Regression (LR) is an example of a model well-suited
for human interpretation. Unfortunately, results from feature
ranking with LR may not be reliable and reproducible for the
same dataset. We demonstrate that stability and consistency
can be achieved via ensembles (“LR ensembles”). As a specific
example of the real-world utility of our associated framework,
we apply LR ensembles to single-nucleotide polymorphisms
(SNPs) associated with the recent speciation of the malaria
vectors Anopheles gambiae and Anopheles coluzzii and compare
with the more common univariate metric FST .

I. INTRODUCTION

Supervised machine-learning (ML) models are most com-
monly used to “learn” patterns from labeled data and then
use the learned patterns to predict the associated classes
of unlabeled data. To extract patterns that distinguish input
classes, ML models separate out predictive input features
(variables) from the rest. Beyond being used just for automated
classification, supervised ML models can be interpreted to
find which features or combination of features distinguish the
classes and lead to human understanding and insight.

Interpretable models have many applications in bioinfor-
matics and are often used in genome-wide association studies
(GWAS). In this context, features are engineered from ob-
served variants and a predictive model is trained on individuals
labeled by their characterized phenotypes. The model is then
interpreted to find variants that may be associated with the
differences.

Although single-SNP association tests [1] or univariate
measures such as FST for population-wide differences [2],
[3] are more common, interpretable machine learning models,
particularly Logistic Regression (LR), have been applied suc-
cessfully to identify important and relevant genetic variants
[4]–[14].

Unfortunately, it has been independently observed that fea-
ture selection with Logistic Regression can be unreliable and
unstable with highly-correlated features, which are expected
in gene variant analysis. Toloşi, et al. [15] haved proposed the
application of clustering to identify and collapse correlated
features1. However, standard clustering methods such as k-

1Standard distance metrics such as the Euclidean distance do not account
for cases where labels are permuted but have perfect association.

means are ill-suited for categorical variables, which is one
method by which to encode variants. Finally, specialized
clustering methods such as k-modes [16] are not widely
available in common machine-learning libraries, limiting their
availability for the broader bioinformatics community.

Applying ideas from Random Forests [17], we introduce an
alternative method for variant analysis we call “Logistic Re-
gression Ensembles,” which we expect will be broadly useful.
Our framework provides mechanisms for averaging the feature
weights across the models in an ensemble and determining
the number of models needed to achieve stable rankings,
which achieves stable, consistent, and reproducible results.
Because this approach is compatible with standard Logistic
Regression implementations, this framework can be used with
the user’s programming language and libraries of choice and
automatically inherits the advantages of new versions as they
are released. We provide a reference implementation using
scikit-learn in Asaph, a variant analysis toolkit.

As a specific example of the real-world utility of our
method, we apply LR ensembles to single-nucleotide poly-
morphisms (SNPs) associated with the recent speciation of
the malaria vectors Anopheles gambiae and Anopheles coluzzii
from [18]. Tools and methods for identifying sequence-based
differences are valuable for molecularly characterizing such
closely-related species and ultimately to help understand spe-
ciation in these model systems [19]. PCA analysis of samples
from the two species has shown strong evidence for strong
similarity within species and clear differences between species
[2], but localizing key variants is ongoing work [18].

First, we compare rankings generated by pairs of single
LR models trained using the common Stochastic Gradient
Descent (SGD) method to show that the rankings of SNPs
from the same dataset vary significantly. Then, we show
that ensembles of 250 models can achieve agreement as
high as 99.0%. Finally, we compare LR ensembles and the
more common metric FST using Jaccard similarity and the
coefficient of determination (r2) between scores computed by
the two methods.

II. METHODS

A. Dataset

Analyses were performed using biallelic SNPs at ≈4.6
million positions from 149 Anopheles gambiae (BFM) and



Anopheles coluzzii (BFS) mosquitoes. Details on the sequenc-
ing and variant calling (including filtering) are given in [18].

B. Logistic Regression Ensembles

Assume we have N samples with V bialleic positions. Each
position has a reference allele and an alternative allele, and at
each position, each sample has one of three genotypes (ho-
mozygous reference, homozygous alternate, or heterogyzous).

Here, we consider two ways of encoding the variants as
a feature matrix X with dimensions N × P . With the geno-
type categories feature-encoding scheme, we represent each
genotype for each position as three categorical variables, and
there are P = 3V features. If sample i has the homozygous
reference genotype at position k, then we set Xi,3k+1 = 1. If
sample i has the homozygous alternate genotype at position
k, then we set Xi,3k+2 = 1. If sample i has the heterozy-
gous genotype at position k, then we set Xi,3k+3 = 1. If
the genotype of sample i is unknown at position k, then
we do nothing. For each variant v, we define a multiset
Sv = {3k+1, 3k+2, 3k+3} of corresponding feature indices.

With the allele counts feature-encoding scheme, we record
the number of times each allele occurs for sample i at position
k, and there are P = 2V features. If sample i has the
homozygous reference genotype at position k, then we set
Xi,2k+1 = 2. If sample i has the homozygous alternate
genotype at position k, then we set Xi,2k+2 = 2. If sample
i has the heterozygous genotype at position k, then we set
Xi,2k+1 = 1 and Xi,2k+2 = 1. If the genotype of sample
i is unknown at position k, then we set Xi,2k+1 = 0
and Xi,2k+2 = 0. For each variant l, we define a multiset
Sl = {2k + 1, 2k + 2} of corresponding feature indices.

From the samples’ population labels, we define a N -length
vector y of class labels. We then form an ensemble of M
Logistic Regression models with the form:

P (yi = 1|xi) =
1

1 + exp(−βm · x+ β0,m)
(1)

where yi is the class label and xi is the feature vector for
a single sample i and βm is the P -length weight vector and
β0,m is the intercept for model m.

We train each model separately using Stochastic Gradient
Descent and an L2 penalty. (For the experiments in this
paper, we performed 20 epochs of training for each model.)
When bagging is employed, N samples are sampled with
replacement from the original set to obtain a new feature
matrix Xm and vector ym of class labels for each model m.

After training the models, we then employ the weight
vectors to rank the SNPs. The weight vector βm of each model
m is transformed by taking the absolute values of the elements
and normalizing the vector to get β̂m (Equation 2). From
the normalized weight vectors, we then calculate an weight
wk for each feature k by averaging the kth elements of each
normalized vector β̂m for each model m (Equation 3). From
the normalized feature weights, we then calculate the weight
vl for each SNP l by taking the average of the feature weights

wk for k ∈ Sl (Equation 4). We then sort the variants in
descending order by their weights vl for l = 1, 2, . . . , P .

β̂m =
|βm|
‖βm‖

(2)

wk =
1

M

M∑
m=1

β̂m,k (3)

vl =
1

‖Sl‖
∑
k∈Sl

wk (4)

A single Logistic Regression model is a just special case
where M = 1.

C. Ranking SNPs with FST

To rank the SNPs, we first calculated the the FST score
for each position using VCFTools [20]. We filtered out all
positions with invalid (nan) scores. Then, we sorted the SNPs
in descending order by their FST scores.

D. Metrics for Comparing Rankings and Scores

Given two pairs of SNP rankings, we selected the top k
SNPs from each input ranking to get two sets, A and B, of
SNPs. We then calculated the Jaccard Similarity as:

J(A,B) =
|A ∩B|
|A ∪B|

(5)

where 0 ≤ J(A,B) ≤ 1.
To directly evaluate the agreement of the scoring of SNPs,

we computed the coefficient of determination (r2). Given two
pairs of scores for a set of SNPs, we generated a pair of column
vectors. We then used SciPy’s ‘linregress‘ function [21] to
compute the coefficient of determination (r2).

E. Asaph: an Open-Source Toolkit for Variant Analysis

Our method (see Figure 1) was evaluated using Asaph, an
open-source toolkit for variant analysis. Asaph was imple-
mented in Python using Numpy / Scipy [22], Matlotlib [23],
and Scikit Learn [24] and is available at https://github.com/
rnowling/asaph under the Apache Public License v2.

III. RESULTS

A. Disagreement in Top-Ranked SNPs from Two LR Models

Genomes often have on the order of millions of variants.
With such large data sizes, approximate, stochastic, optimiza-
tion methods such as Stochastic Gradient Descent (SGD) are
often used to train the Logistic Regression (LR) models.
LR models trained with SGD on the same data, however,
can produce vastly different weight distributions, resulting in
significant disagreement in the rankings. This is especially
true when the intrinsic dimensionality of the problem is much
lower than the number of features.

We demonstrate this inconsistency. For each of the two
feature-encoding schemes (genotype categories and allele
counts), we trained two LR models. We then ranked the
SNPs using each model’s feature weights as described in



Rank SNPs

Population
Labels

Variants

Random Forest
Train Logistic 
Regression 
Ensembles

Rank SNPs

Check 
Convergence w/ 

Jaccard 
Similarity

Not
Converged

Increment 
Number of 

Models

Encode Feature 
Matrix

Output Ranked 
SNPs

C
on

ve
rg
ed

Fig. 1: Logistic Regression Ensembles workflow

Section II-B. We selected the top 0.01% (466) of the SNPs
ranked by each model and used Jaccard Similarity to compare
the rankings of the four models. As measured by Jaccard
Similarity, the SNPs ranked by the two allele count models
agreed on only 80.7% of SNPs, while two genotype category
models agreed on as few as 38.8% of SNPs. (See Table I.)
Such low-levels of agreement suggest that rankings generated
from a single LR model are inconsistent.

TABLE I: Comparison of ranking of SNPs by two pairs (one
pair for each feature-encoding scheme) of LR models

Threshold (SNPs) Jaccard Similarity
Allele Counts Genotype Categories

0.01% (466) 80.7% 38.8%
0.1% (4,662) 83.8% 63.0%
1% (46,620) 79.2% 62.9%

10% (466,202) 76.6% 63.8%

B. Achieving Agreement with an Ensemble of LR Models

Leo Breiman, the inventor of Decision Trees, identified
similar instabilities when he observed that small changes in
the training sets resulted in large changes in resulting Decision
Tree and Linear Regression models [17]. In part to overcome
those instabilities, Breiman suggested using an ensemble, lead-
ing to Random Forests [25]. We propose a similar approach. In
particular, we propose training an ensemble of LR models and
using an average of their weights to rank variants. In doing so,
we reduce variance and should enable consistent, reproducible
rankings across models.

Following the approach described in Section II-B, we
trained two pairs of ensembles for each of the two feature-
encoding schemes (genotype categories and allele counts) for
a range of ensemble sizes. We selected the top 0.01% (466) of
the SNPs ranked by each ensemble and used Jaccard Similarity

to compare the rankings between each pair. For both feature-
encoding schemes, agreement plateaued around 250 models.
(See Figure 2.) As measured by Jaccard Similarity, the SNPs
ranked by the allele count ensembles agreed on 99.0% SNPs
versus the 80.7% agreement achieved for single LR models.
Similarly, the genotype category ensembles agreed on 95.0%
of SNPs versus 38.8% agreement achieved for single LR
models. The ensemble approach is thus able to compensate
for the variance by adequately sampling and then averaging
the various possible weight distributions.

C. Accounting for Uncertainty in Population Frequencies with
Bagging

Once again employing ideas from Random Forests, we
employ bagging, or bootstrap aggregation, to sample over
different possible population genotype frequencies [17], [26].
Bagging alone introduces additional variance in the models,
which could cause inconsistency in the rankings, but is ac-
counted for by an ensemble approach. Using the same as-
sessment described in Section III-B and with 250 models, the
allele counts-encoded (left) and genotype categories-encoded
(right) ensembles achieved overlaps of 97.0% and 95.0% for
the top 0.01% (466) ranked SNPs, respectively (see Figure 2).

D. Comparison of SNPs as Ranked by FST and LR Ensembles

Fixation index (FST ) is an univariate method commonly
used to rank genetic variations between populations. Since
SNPs identified via FST have received the most attention and
analysis in the Anopheles research community, we compared
rankings obtained via Logistic Regression (LR) Ensembles
those obtained with FST . SNPs from the data set described in
Section II-A ranked with LR Ensembles (with and without
bagging) of 250 models using the categories and counts
feature-encoding schemes as described in Section II-B and
FST as described in Section II-C.

Agreement was measured in two ways: correlations between
scores and, as above, Jaccard similarity. Scatter plots of scores
for each SNP from the four LR Ensembles versus their FST

scores are shown in Figure 3. Linear Regression models were
trained for each ensemble vs FST , from which coefficients of
determination (r2) were computed (see Table II). Reasonably
high r2 values were achieved using the allele counts feature-
encoding scheme, regardless of whether bagging was used
(r2 = 0.812) or not (r2 = 0.889). However, bagging led to
a significant improvement in r2 (from 0.643 to 0.850) when
using the genotype categories feature-encoding scheme.

As the top 0.01% and 0.1% of SNPs are likely to be the most
interesting variants, we used Jaccard Similarity to compare
agreement of the top-ranked SNPs of the LR ensembles
with FST . The comparisons using Jaccard Similarities of the
top-ranked SNPs tell a more nuanced story (see Table III)
than the comparison of scores for all SNPs. For both the
allele counts and genotype categories feature-encoded LR
ensembles, bagging improved agreement of the top-ranked
SNPs vs FST over not using bagging. The allele counts
feature-encoded LR ensemble achieved agreement as high as



Fig. 2: Jaccard Similarities of Top-Ranked SNPs from Pairs of LR Ensemble Models
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(a) Allele Counts
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(b) Genotype Categories
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(c) Allele Counts (Bagging)
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(d) Genotype Categories (Bag-
ging)

95.1% and 91.9% with FST for the top 0.01% (466) and
0.1% (4,662) SNPs, while the genotype categories feature-
encoded LR ensemble had lower levels of agreement of 86.8%
and 79.2%, respectively. When expanded out to the top 1%
(46,620) and 10% (466,202) SNPs, the genotype categories
feature-encoded LR ensemble achieved agreements as high as
98.7% and 99.7%, while the allele counts feature-encoded LR
ensemble showed reduced agreement at 79.6% and 77.4%.

TABLE II: Coefficients of Determination (r2) of Scores from
LR Ensembles vs FST

Allele Counts Genotype Categories
No Bagging 0.812 0.643

Bagging 0.889 0.850

TABLE III: Comparison of rankings of SNPs by LR Ensem-
bles and FST

Threshold (SNPs) Allele Counts Genotype Categories
Bagging No Bagging Bagging No Bagging

0.01% (466) 95.1% 94.2% 86.8% 69.7%
0.1% (4,662) 91.9% 91.7% 79.2% 65.6%
1% (46,620) 79.6% 79.6% 98.8% 98.7%

10% (466,202) 77.4% 76.7% 99.8% 99.7%

IV. DISCUSSION AND CONCLUSION

We show that feature weights from Logistic Regression
models trained with Stochastic Gradient Descent (SGD) can
vary significantly between instances trained on the same SNP
data. In Section III-A, we compared the top 0.01% (466)
ranked SNPs from two models and found that they can agree
on as few as 38.8% of SNPs and, in the best case, may only
agree on as many as 80.7% of SNPs.

To remedy this problem, we proposed Logistic Regression
Ensembles. With our approach, the weights from the models in
the ensemble are averaged and then used to rank the features.
In Section III-B we demonstrated that, by using a pair of
ensembles with 250 models each, agreement, as measured by
Jaccard Similarity, of up to 99.0% of the top 0.01% (466)
of SNPs ranked can be achieved. Even with the additional
variance introduced by using bagging to account for sampling
bias, we were able to demonstrate agreement up to 97.0% (see
Section III-C).

In Section III-D, we applied LR ensembles to single-
nucleotide polymorphisms (SNPs) associated with the recent
speciation of the malaria vectors Anopheles gambiae and
Anopheles coluzzii from [18] and validated LR Ensembles
against the popular univariate method FST . With the allele
counts encoding scheme, LR ensembles achieved a coefficient
of determination (r2) of up to 0.889, indicating significant
agreement. Using Jaccard Similarity, LR Ensembles achieved
an agreement of up to 95.1%.

LR has been used successfully in several GWAS studies. If
scientists desire to use LR instead of FST or other methods,
our LR ensembles method enables them to do so while
resolving issues with consistency and stability. These LR
Ensembles are implemented and available in Asaph, an open-
source toolkit for exploring machine-learning approaches to
ranking SNPs in incipient species of insects.
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